Not long ago, the data analytics world relied on monolithic infrastructures—tightly coupled systems that were difficult to scale, maintain, and adapt to changing needs. These legacy setups often resulted in operational bottlenecks, delayed insights, and high maintenance costs. To overcome these challenges, the industry shifted toward what was deemed the Modern Data Stack (MDS)—a suite of focused tools optimized for specific stages of the data engineering lifecycle.
This modular approach was revolutionary, allowing organizations to select best-in-class tools like Airflow for Orchestration or a managed version of Airflow from Astronomer or Amazon without the need to build custom solutions. While the MDS improved scalability, reduced complexity, and enhanced flexibility, it also reshaped the build vs. buy decision for analytics platforms. Today, instead of deciding whether to create a component from scratch, data teams face a new question: Should they build the infrastructure to host open-source tools like Apache Airflow and dbt Core, or purchase their managed counterparts? This article focuses on these two components because pipeline orchestration and data transformation lie at the heart of any organization’s data platform.
When we say build in terms of open-source solutions, we mean building infrastructure to self-host and manage mature open-source tools like Airflow and dbt. These two tools are popular because they have been vetted by thousands of companies! In addition to hosting and managing, engineers must also ensure interoperability of these tools within their stack, handle security, scalability, and reliability. Needless to say, building is a huge undertaking that should not be taken lightly.
dbt and Airflow both started out as open-source tools, which were freely available to use due to their permissive licensing terms. Over time, cloud-based managed offerings of these tools were launched to simplify the setup and development process. These managed solutions build upon the open-source foundation, incorporating proprietary features like enhanced user interfaces, automation, security integration, and scalability. The goal is to make the tools more convenient and reduce the burden of maintaining infrastructure while lowering overall development costs. In other words, paid versions arose out of the pain points of self-managing the open-source tools.
This begs the important question: Should you self-manage or pay for your open-source analytics tools?
As with most things, both options come with trade-offs, and the “right” decision depends on your organization’s needs, resources, and priorities. By understanding the pros and cons of each approach, you can choose the option that aligns with your goals, budget, and long-term vision.
A team building Airflow in-house may spend weeks configuring a Kubernetes-backed deployment, managing Python dependencies, and setting up DAG synchronizing files via S3 or Git. While the outcome can be tailored to their needs, the time and expertise required represent a significant investment.
Building with open-source is not free. Cons Continued
Before moving on to the buy tradeoffs, it is important to set the record straight. You may have noticed that we did not include “the tool is free to use” as one of our pros for building with open-source. You might have guessed by reading the title of this section, but many people incorrectly believe that building their MDS using open-source tools like dbt is free. When in reality there are many factors that contribute to the true dbt pricing and the same is true for Airflow.
How can that be? Well, setting up everything you need and managing infrastructure for Airflow and dbt isn’t necessarily plug and play. There is day-to-day work from managing Python virtual environments, keeping dependencies in check, and tackling scaling challenges which require ongoing expertise and attention. Hiring a team to handle this will be critical particularly as you scale. High salaries and benefits are needed to avoid costly mistakes; this can easily cost anywhere from $5,000 to $26,000+/month depending on the size of your team.
In addition to the cost of salaries, let’s look at other possible hidden costs that come with using open-source tools.
The time it takes to configure, customize, and maintain a complex open-source solution is often underestimated. It’s not until your team is deep in the weeds—resolving issues, figuring out integrations, and troubleshooting configurations—that the actual costs start to surface. With each passing day your ROI is threatened. You want to start gathering insights from your data as soon as possible. Datacoves helped Johnson and Johnson set up their data stack in weeks and when issues arise, a you will need expertise to accelerate the time to resolution.
And then there’s the learning curve. Not all engineers on your team will be seniors, and turnover is inevitable. New hires will need time to get up to speed before they can contribute effectively. This is the human side of technology: while the tools themselves might move fast, people don’t. That ramp-up period, filled with training and trial-and-error, represents a hidden cost.
Security and compliance add another layer of complexity. With open-source tools, your team is responsible for implementing best practices—like securely managing sensitive credentials with a solution like AWS Secrets Manager. Unlike managed solutions, these features don’t come prepackaged and need to be integrated with the system.
Compliance is no different. Ensuring your solution meets enterprise governance requirements takes time, research, and careful implementation. It’s a process of iteration and refinement, and every hour spent here is another hidden cost as well as risking security if not done correctly.
Scaling open-source tools is where things often get complicated. Beyond everything already mentioned, your team will need to ensure the solution can handle growth. For many organizations, this means deploying on Kubernetes. But with Kubernetes comes steep learning curves and operational challenges. Making sure you always have a knowledgeable engineer available to handle unexpected issues and downtimes can become a challenge. Extended downtime due to this is a hidden cost since business users are impacted as they become reliant on your insights.
A managed solution for Airflow and dbt can solve many of the problems that come with building your own solution from open-source tools such as: hassle-free maintenance, improved UI/UX experience, and integrated functionality. Let’s take a look at the pros.
Using a solution like MWAA, teams can leverage managed Airflow eliminating the need for infrastructure worries however additional configuration and development will be needed for teams to leverage it with dbt and to troubleshoot infrastructure issues suck as containers running out of memory.
For data teams, the allure of a custom-built solution often lies in its promise of complete control and customization. However, building this requires significant time, expertise, and ongoing maintenance. Datacoves bridges the gap between custom-built flexibility and the simplicity of managed services, offering the best of both worlds.
With Datacoves, teams can leverage managed Airflow and pre-configured dbt environments to eliminate the operational burden of infrastructure setup and maintenance. This allows data teams to focus on what truly matters—delivering insights and driving business decisions—without being bogged down by tool management.
Unlike other managed solutions for dbt or Airflow, which often compromise on flexibility for the sake of simplicity, Datacoves retains the adaptability that custom builds are known for. By combining this flexibility with the ease and efficiency of managed services, Datacoves empowers teams to accelerate their analytics workflows while ensuring scalability and control.
Datacoves doesn’t just run the open-source solutions, but through real-world implementations, the platform has been molded to handle enterprise complexity while simplifying project onboarding. With Datacoves, teams don’t have to compromize on features like Datacoves-Mesh (aka dbt-mesh), column level lineage, GenAI, Semantic Layer, etc. Best of all, the company’s goal is to make you successful and remove hosting complexity without introducing vendor lock-in. What Datacove does, you can do yourself if given enough time, experience, and money. Finally, for security concious organizations, Datacoves is the only solution on the market that can be deployed in your private cloud with white-glove enterprise support.
Datacoves isn’t just a platform—it’s a partnership designed to help your data team unlock their potential. With infrastructure taken care of, your team can focus on what they do best: generating actionable insights and maximizing your ROI.
The build vs. buy debate has long been a challenge for data teams, with building offering flexibility at the cost of complexity, and buying sacrificing flexibility for simplicity. As discussed earlier in the article, solutions like dbt and Airflow are powerful, but managing them in-house requires significant time, resources, and expertise. On the other hand, managed offerings like dbt Cloud and MWAA simplify operations but often limit customization and control.
Datacoves bridges this gap, providing a managed platform that delivers the flexibility and control of a custom build without the operational headaches. By eliminating the need to manage infrastructure, scaling, and security. Datacoves enables data teams to focus on what matters most: delivering actionable insights and driving business outcomes.
As highlighted in Fundamentals of Data Engineering, data teams should prioritize extracting value from data rather than managing the tools that support them. Datacoves embodies this principle, making the argument to build obsolete. Why spend weeks—or even months—building when you can have the customization and adaptability of a build with the ease of a buy? Datacoves is not just a solution; it’s a rethinking of how modern data teams operate, helping you achieve your goals faster, with fewer trade-offs.
dbt (data build tool) is a powerful data transformation tool that allows data analysts and engineers to transform data in their warehouse more effectively. It enables users to write modular SQL queries, which it then runs on top of the data warehouse; this helps to streamline the analytics engineering workflow by leveraging the power of SQL. In addition to this, dbt incorporates principles of software engineering, like modularity, documentation and version control.
Before we jump into the list of dbt alternatives it is important to distinguish dbt Core from dbt Cloud. The primary difference between dbt Core and dbt Cloud lies in their execution environments and additional features. dbt Core is an open-source package that users can run on their local systems or orchestrate with their own scheduling systems. It is great for developers comfortable with command-line tools and custom setup environments. On the other hand, dbt Cloud provides a hosted service with dbt core as its base. It offers a web-based interface that includes automated job scheduling, an integrated IDE, and collaboration features. It offers a simplified platform for those less familiar with command-line operations and those with less complex platform requirements.
You may be searching for alternatives to dbt due to preference for simplified platform management, flexibility to handle your organization’s complexity, or other specific enterprise needs. Rest assured because this article explores ten notable alternatives that cater to a variety of data transformation requirements.
We have organized these dbt alternatives into 3 groups: dbt Cloud alternatives, code based dbt alternatives , and GUI based dbt alternatives.
dbt Cloud is a tool that dbt Labs provides, there are a few things to consider:
Although dbt Cloud can help teams get going quickly with dbt, it is important to have a clear understanding of the long-term vision for your data platform and get a clear understanding of the total cost of ownership. You may be reading this article because you are still interested in implementing dbt but want to know what your options are other than dbt Clould.
Datacoves is tailored specifically as a seamless alternative to dbt Cloud. The platform integrates directly with existing cloud data warehouses, provides a user-friendly interface that simplifies the management and orchestration of data transformation workflows with Airflow, and provides a preconfigured VS Code IDE experience. It also offers robust scheduling and automation with managed Airflow, enabling data transformations with dbt to be executed based on specific business requirements.
Flexibility and Customization: Datacoves allows customization such as enabling VSCode extensions or adding any Python library. This flexibility is needed when adapting to dynamic business environments and evolving data strategies, without vendor lock-in.
Handling Enterprise Complexity: Datacoves is equipped with managed Airflow, providing a full-fledged orchestration tool necessary for managing complex end-to-end ELT pipelines. This ensures robust data transformation workflows tailored to specific business requirements. Additionally, Datacoves does not just support the T (transformations) in the ELT pipeline, the platform spans across the pipeline by helping the user tie all the pieces together. From initial data load to post-transformation operations such as pushing data to marketing automation platforms.
Cost Efficiency: Datacoves optimizes data processing and reduces operational costs associated with data management as well as the need for multiple SaaS contracts. Its pricing model is designed to scale efficiently.
Data Security and Compliance: Datacoves is the only commercial managed dbt data platform that supports VPC deployment in addition to SaaS, offering enhanced data security and compliance options. This ensures that sensitive data is handled within a secure environment, adhering to enterprise security standards. A VPC deployment is advantageous for some enterprises because it helps reduce the red tape while still maintaining optimal security.
Open Source and Reduced Vendor Lock-In: Datacoves bundles a range of open-source tools, minimizing the risk of vendor lock-in associated with proprietary features. This approach ensures that organizations have the flexibility to switch tools without being tied to a single vendor.
It is worth mentioning that that because dbt Core is open source a DIY approach is always an option. However, opting for a DIY solution requires careful consideration of several factors. Key among these is assessing team resources, as successful implementation and ongoing maintenance of dbt Core necessitate a certain level of technical expertise. Additionally, time to production is an important factor; setting up a DIY dbt Core environment and adapting it to your organization’s processes can be time-consuming.
Finally, maintainability is essential- ensuring that the dbt setup continues to meet organizational needs over time requires regular updates and adjustments. While a DIY approach with dbt Core can offer customization and control, it demands significant commitment and resources, which may not be feasible for all organizations.
This is a very flexible approach because it will be made in-house and with all the organization’s needs in mind but requires additional time to implement and increases the total cost of long-term ownership.
For organizations seeking a code-based data transformation alternative to dbt, there are two contenders they may want to consider.
SQLMesh is an open-source framework that allows for SQL or python-based data transformations. Their workflow provides column level visibility to the impact of changes to downstream models. This helps developers remediate breaking changes. SQLMesh creates virtual data environments that also eliminate the need to calculate data changes more than once. Finally, teams can preview data changes before they are applied to production.
SQLMesh allows developers to create accurate and efficient pipelines with SQL. This tool integrates well with tools you are using today such as Snowflake, and Airflow. SQLMesh also optimizes cost savings by reusing tables and minimizing computation.
Dataform enables data teams to manage all data operations in BigQuery. These operations include creating table definitions, configuring dependencies, adding column descriptions, and configuring data quality assertions. It also provides version control and integrates with GitLab or GitHub.
Dataform is a great option for those using BigQuery because it fosters collaboration among data teams with strong version control and development practices directly integrated into the workflow. Since it keeps you in BigQuery, it also reduces context switching and centralizes data models in the warehouse, improving efficiency.
AWS Glue is a serverless data integration service that makes it easy to discover, prepare, and combine data for analytics, machine learning, and application development. It automates the provisioning of ETL code. It is worth noting that Amazon Glue offers GUI elements (like Glue Studio).
AWS Glue provides flexible support for various pipelines such as ETL, ELT, batch and more, all without a vendor lock-in. It also scales on demand, offering a pay-as-you-go billing. Lastly, this all-in-one platform has tools to support all data users from the most technical engineers to the non-technical business users.
While experience has taught us that there is no substitute for a code-based data transformation solution. Some organizations may opt for a graphical user interface (GUI) tool. These tools are designed with visual interfaces that allow users to drag and drop components to build data integration and transformation workflows. Ideal for users who may be intimidated by a code editor like VS Code, graphical ETL tools may simplify data processes in the short term.
Matillion is a cloud-based data integration platform that allows organizations to build and manage data pipelines and create no-code data transformations at scale. The platform is designed to be user-friendly, offering a graphical interface where users can build data transformation workflows visually.
Matillion simplifies the ETL process with a drag-and-drop interface, making it accessible for users without deep coding knowledge. It also supports major cloud data warehouses like Amazon Redshift, Google BigQuery, and Snowflake, enhancing scalability and performance.
Informatica offers extensive data integration capabilities including ETL, hundreds of no code connectors cloud connectors, data masking, data quality, and data replication. It also uses a metadata-driven approach for data integration. In addition, it was built with performance, reliability, and security in mind to protect your valuable data.
Informatica enhances enterprise scalability and supports complex data management operations across various data types and sources. Informatica offers several low-code and no-code features across its various products, particularly in its cloud services and integration tools. These features are designed to make it easier for users who may not have deep technical expertise to perform complex data management tasks.
Alteryx allows you to automate your analytics at scale. It combines data blending, advanced analytics, and data visualization in one platform. It offers tools for predictive analytics and spatial data analysis.
Alteryx enables users to perform complex data analytics with AI. It also improves efficiency by allowing data preparation, analysis, and reporting to be done within a single tool. It can be deployed on-prem or in the cloud and is scalable to meet enterprise needs.
Azure Data Factory is a fully managed, serverless data integration service that integrates with various Azure services for data storage and data analytics. It provides a visual interface for data integration workflows which allows you to prepare data, construct ETL and ELT processes, and orchestrate and monitor pipelines code-free.
Azure Data Factory can be beneficial for users utilizing various Azure services because it allows seamless integration with other Microsoft products, which is ideal for businesses already invested in the Microsoft ecosystem. It also supports a pay-as-you-go model.
Talend offers an end-to-end modern data management platform with real-time or batch data integration as well as a rich suite of tools for data quality, governance, and metadata management. Talend Data Fabric combines data integration, data quality, and data governance into a single, low-code platform.
Talend can enhance data quality and reliability with built-in tools for data cleansing and validation. Talend is a cloud-independent solution and supports cloud, multi-cloud, hybrid, or on-premises environments.
SQL Server Integration Services are a part of Microsoft SQL Server, providing a platform for building enterprise-level data integration and data transformations solutions. With this tool you can extract and transform data from a wide variety of sources such as XML data files, flat files, and relational data sources, and then load the data into one or more destinations. It Includes graphical tools and wizards for building and debugging packages.
SQL Server Integration Services are ideal for organizations heavily invested in SQL Server environments. They offer extensive support and integration capabilities with other Microsoft services and products.
While we believe that code is the best option to express the complex logic needed for data pipelines, the dbt alternatives we covered above offer a range of features and benefits that cater to different organizational needs. Tools like Matillion, Informatica, and Alteryx provide graphical interfaces for managing ETL processes, while SQLMesh, and Dataform offer code-based approaches to SQL and Python based data transformation.
For those specifically looking for a dbt Cloud alternative, Datacoves stands out as a tailored, flexible solution designed to integrate seamlessly with modern data workflows, ensuring efficiency and scalability.
The dbt-utils package enhances the dbt experience by offering a suite of utility macros. Designed to tackle common SQL modeling patterns, it streamlines complex operations, allowing users to focus on data transformation rather than the intricacies of SQL. dbt-utils is a must-have tool for dbt aficionados!
The dbt-utils package is a gem in the world of data transformations. Let this cheat sheet guide you swiftly through its features, ensuring you get the most out of dbt-utils. Enjoy!
The SQL generators in the dbt-utils package streamline your modeling tasks. By automating common SQL patterns, they minimize manual coding and guarantee consistent, high-quality queries. Think of it as a handy toolkit for every dbt user's SQL endeavors!
Within the dbt-utils package lies a set of generic tests, designed to validate your data effortlessly. These tests ensure consistency and quality, checking for common issues without the need to craft custom validation rules. It's data integrity made simple for dbt users.
The introspective macros within the dbt-utils package are a window into your data's metadata. They empower you to dynamically interact with and understand the underlying structure of your datasets. It's like having a magnifying glass for the intricacies of your dbt projects!
Please contact us with any errors or suggestions.
Working with data involves bridging the gap between raw data collection and deciphering meaningful insights. Data transformation is at the heart of this process, and a variety of tools are available to facilitate this. Two have risen to prominence: dbt (Data Build Tool) and Apache Airflow. While both are celebrated for their prowess in facilitating data transformations, they have their distinct methodologies and specialties. Let's dive deeper into the nuances, strengths, and challenges that each tool brings to the table.
If you are a data professional trying to navigate the complex landscape of data orchestration tools or an organization looking to optimize its data operations and workflows, then this article is for you. It's essential to understand that when it comes to choosing between dbt and Airflow, it's not necessarily an 'either-or' decision. In many scenarios, pairing both tools can significantly elevate their potential, further optimizing data transformation workflows.
Airflow is a popular open-source tool that let's you author, schedule, and monitor data pipelines. It can be used to orchestrate and monitor complex workflows.
Imagine a scenario where you have a series of tasks: Task A, Task B, and Task C. These tasks need to be executed in sequence every day at a specific time. Airflow enables you to programmatically define the sequence of steps as well as what each step does. With Airflow you can also monitor the execution of each step and get alerts when something fails.
Airflow provides flexibility, which means you can script the logic of each task directly within the tool. However, this flexibility might be both a blessing and a curse. Just because you can code everything within Airflow, it doesn't mean that you should. Overly complicated workflows and incorporating too much logic within Airflow can make it difficult to manage and debug. Ensure that when you're using Airflow, it's the right tool for the specific task you're tackling. For example, it is far more efficient to transform data within a data warehouse than to move data to the Airflow server, perform the transformation, and write the data back to the warehouse.
At the heart of Apache Airflow's appeal is its flexibility when it comes to customizing each step in a workflow. Unlike other tools that may only let you schedule and order tasks, Airflow offers users the ability to define the code behind each task. This means you aren't just deciding the "what" and the "when" of your tasks, but also the"how". Whether it's extracting and loading data from sources, defining transformations, or integrating with other platforms, Airflow lets you tailor each step to your exact requirements. This granularity makes it a powerful ally for those looking to have granular control over their data workflows, ensuring that each step is executed precisely as intended.
While Airflow is powerful, it's important to strike a balance. You should use Airflow primarily as an orchestrator. If mature tools exist for specific tasks, consider integrating them into your workflow and allow Airflow to handle scheduling and coordination. Let specialized tools abstract away complexity. One example is leveraging a tool like Fivetran or Airbyte to perform data extraction from SaaS applications rather than building all the logic within Airflow.
As stated above, Airflow can be used for many things, but we suggest these use cases.
dbt Core is an open-source framework that leverages templated SQL to perform data transformations. Developed by dbt Labs, it specializes in transforming, testing, and documenting data. While it's firmly grounded in SQL, it infuses software engineering principles into the realm of analytics, promoting best practices like version control and DataOps.
Imagine you have a raw data set and you need to transform it for analytical purposes. dbt allows you to create transformation scripts using SQL which is enhanced with Jinja templating for dynamic execution. Once created, these scripts, called "models" in dbt, can be run to create or replace tables and views in your data warehouse. Each transformation can be executed sequentially and when possible, in parallel, ensuring your data is processed properly.
Unlike some traditional ETL tools which might abstract SQL into drag-and-drop interfaces, dbt embraces SQL as the lingua franca of data transformation. This makes it exceptionally powerful for those well-acquainted with SQL. But dbt goes a step further: by infusing Jinja, it introduces dynamic scripting, conditional logic, and reusable macros. Moreover, dbt's commitment to idempotency ensures that your data transformations are consistent and repeatable, promoting reliability.
Lastly, dbt emphasizes the importance of testing and documentation for data transformations. dbt facilitates the capture of data descriptions, data lineage, data quality tests, and other metadata about the data and it can generate a rich web-based documentation site. dbt's metadata can also be pushed to other tools such a specialized data catalog or data observability tools. While dbt is a transformative tool, it's essential to understand its position in the data stack. It excels at the "T" in ELT (Extract, Load, Transform) but requires complementary tools for extraction and loading.
A common misunderstanding within the data community is that dbt = dbt Cloud. When people say dbt they are referring to dbt Core. dbt Cloud is a commercial offering by dbt Labs and it is built upon dbt Core. It provides additional functionalities to the open source framework; these include a scheduler for automating dbt runs, alongside hosting, monitoring, and an integrated development environment (IDE). This means that you can use the open source dbt Core framework without paying for dbt Cloud, however, you will not get the added features dbt Cloud offers such as the scheduler. If you are using dbt Core you will eventually need an orchestrator such as Airflow to get the job done. For more information, check out our article where we cover the differences between dbt cloud vs dbt core.
As mentioned above, one of the key features of dbt Cloud is its scheduler which allows teams to automate their dbt runs at specified intervals. This functionality ensures that data transformations are executed regularly, maintaining the freshness and reliability of data models. However, it's important to note that dbt Cloud's scheduler only handles the scheduling of dbt jobs, i.e., your transformation jobs. You will still need an orchestrator to manage your Extract and Load (EL) processes and anything after Transform (T), such as visualization.
At Datacoves we solve the deployment and infrastructure problems for you so you can focus on data, not infrastructure. A managed Visual Studio Code editor gives developers the best dbt experience with bundled libraries and extensions that improve efficiency. Orchestration of the whole data pipeline is done with Datacoves’ managed Airflow that also offers a simplified YAML based Airflow job configuration to integrate Extract and Load with Transform. Datacoves has best practices and accelerators built in so companies can get a robust data platform up and running in minutes instead of months. To learn more, check out our product page.
Managing the deployment and infrastructure of dbt Core and Airflow is a not so hidden cost of choosing open source, however, at Datacoves we solve the deployment and infrastructure problems for you so you can focus on data, not infrastructure. A managed Visual Studio Code editor gives developers the best dbt experience with bundled libraries and extensions that improve efficiency. Orchestration of the whole data pipeline is done with Datacoves’ managed Airflow that also offers a simplified YAML based Airflow job configuration to integrate Extract and Load with Transform. Datacoves has best practices and accelerators built in so companies can get a robust data platform up and running in minutes instead of months. To learn more, check out our product page.
When looking at the strengths of each tool, it’s clear that the decision isn’t an either-or solution, but they each have a place in your data platform. Analyzing the strengths of each reveals that Airflow should be leveraged for the end-to-end orchestration of the data journey and dbt should be focused on data transformation, documentation, and data quality. This holds true if you are adopting dbt through dbt Cloud. dbt Core does not come with a scheduler, so you will eventually need an orchestrator such as Airflow to automate your transformations as well as other steps in your data pipeline. If you implement dbt with dbt Cloud, you will be able to schedule your transformations but will still need an orchestrator to handle the other steps in your pipeline. You can also check out other dbt alternatives.
The following table shows a high-level summary.
By now you can see that each tool has its place in an end-to-end data solution, but if you came to this article because you need to choose one to integrate, then here is the summary.
If you're orchestrating complex workflows, especially if they involve various tasks and processes, Apache Airflow should be your starting point as it gives you unparalleled flexibility and granular control over scheduling and monitoring.
An organization starting out with basic requirements may be fine starting with dbt Core, but when end-to-end orchestration is needed, Airflow will need to play a role.
If your primary focus is data transformation and you're looking to apply software development best practices to your analytics, dbt is the right answer. Here is the key takeaway: these tools are not rivals, but allies. While one might be the starting point based on immediate needs, having both in your arsenal unlocks the full potential of your data operations.
While Airflow and dbt are designed to assist data teams in deriving valuable insights, they each excel at unique stages of the workflow. For a holistic data pipeline approach, it's best to integrate both. Use tools such as Airbyte or Fivetran for data extraction and loading and trigger them through Airflow. Once your data is prepped, let Airflow guide dbt in its transformation and validation, readying it for downstream consumption. Post-transformation, Airflow can efficiently distribute data to a range of tools, executing tasks like data feeds to BI platforms, refreshing ML models, or initiating marketing automation processes.
However, a challenge arises when integrating dbt with Airflow: the intricacies of deploying and maintaining the combined infrastructure isn't trivial and can be resource-intensive if not approached correctly. But is there a way to harness the strengths of both Airflow and dbt without getting bogged down in the setup and ongoing maintenance? Yes!
Both Apache Airflow and dbt have firmly established themselves as indispensable tools in the data engineering landscape, each bringing their unique strengths and capabilities to the table. While Apache Airflow has emerged as the premier orchestrator, ensuring that tasks and workflows are scheduled and executed with precision, dbt stands out for its ability to streamline and enhance the data transformation process. The choice is not about picking one over the other, but about understanding how they can be integrated to provide a comprehensive solution.
It's vital to approach the integration and maintenance of these platforms pragmatically. Solutions like Datacoves offer a seamless experience, reducing the complexity of infrastructure management and allowing teams to focus on what truly matters: extracting value from their data. In the end, it's about harnessing the right tools, in the right way, to chart the path from raw data to actionable intelligence. See if Datacoves dbt pricing is right for your organization.
dbt, also known as data build tool, is a data transformation framework that leverages templated SQL to transform and test data. dbt is part of the modern data stack and helps practitioners apply software development best practices on data pipelines. Some of these best practices include code modularity, version control, and continuous testing via its built in data quality framework. In this article we will focus on how data can be tested with dbt via build in functionality and with additional dbt packages and libraries.
Adding tests to workflows does more than ensure code and data integrity; it facilitates a continuous dialogue with your data, enhancing understanding and responsiveness. By integrating testing into your regular workflows, you can:
By embedding testing into the development cycle and consuming the results diligently, teams not only safeguard the functionality of their data transformations but also enhance their overall data literacy and operational efficiency. This proactive approach to testing ensures that the insights derived from data are both accurate and actionable.
In dbt, there are two main categories of tests: data tests and unit tests.
Data tests are meant to be executed with every pipeline run to validate the integrity of the data and can be further divided into two types: Generic tests and Singular tests.
Regardless of the type of data test, the process is the same behind the scenes: dbt will compile the code to a SQL SELECT statement and execute it against your database. If any rows are returned by the query, this indicates a failure to dbt.
Unit tests, on the other hand, are meant to validate your transformation logic. They rely on predefined data for comparison to ensure your logic is returning an expected result. Unlike data tests, which are meant to be run with every pipeline execution, unit tests are typically run during the CI (Continuous Integration) step when new code is introduced. Unit tests were incorporated in dbt Core as of version 1.8.
These are foundational tests provided by dbt-core, focusing on basic schema validation and source freshness. These tests are ideal for ensuring that your data sources remain valid and up-to-date.
dbt-core provides four built-in generic tests that are essential for data modeling and ensuring data integrity:
unique: is a test to verify that every value in a column (e.g. customer_id) contains unique values. This is useful for finding records that may inadvertently be duplicated in your data.
not_null: is a test to check that the values for a given column are always present. This can help you find cases where data in a column suddenly arrives without being populated.
accepted_values: this test is used to validate whether a set of values within a column is present. For example, in a column called payment_status, there can be values like pending, failed, accepted, rejected, etc. This test is used to verify that each row within the column contains one of the different payment statuses, but no other. This is useful to detect changes in the data like when a value gets changed such as accepted being replaced with approved.
relationships: these tests check referential integrity. This type of test is useful when you have related columns (e.g. the customer identifier) in two different tables. One table serves as the “parent” and the other is the “child” table. This is common when one table has a transaction and only lists a customer_id and the other table has the details for that customer. With this test we can verify that every row in the transaction table has a corresponding record in the dimension/details table. For example, if you have orders for customer_ids 1, 2, 3 we can validate that we have information about each of these customers in the customer details table.
Using a generic test is done by adding it to the model's property (yml) file.
Generic tests can accept additional test configurations such as a where clause to apply the test on a subset of rows. This can be useful on large tables by limiting the test to recent data or excluding rows based on the value of another column. Since an error will stop a dbt build or dbt test of the project, it is also possible to assign a severity to a test and optionally a threshold where errors will be treated as warning instead of errors. Finally, since dbt will automatically generate a name for the test, it may be useful to override the auto generated test name for simplicity. Here's the same property file from above with the additional configurations defined.
Singular tests allow for the customization of testing parameters to create tailored tests when the default generic ones (or the ones in the packages discussed below) do not meet your needs. These tests are simple SQL queries that express assertions about your data. An example of this type of test can be a more complex assertion such as having sales for one product be within +/- 10% of another product. The SQL simply needs to return the rows that do not meet this condition.
In dbt, it is also possible to define your own custom generic tests. This may be useful when you find yourself creating similar Singular tests. A custom generic test is essentially the same as a dbt macro which has a least a model as a parameter, and optionally column_name, if the test will apply to a column. Once the generic test is defined, it can be applied many times just like the generic tests shipped with dbt Core. It is also possible to pass additional parameters to a custom generic test.
As our data transformations become more complex, the need for testing becomes increasingly important. The concept of unit testing is already well established in software development, where tests confirm that individual units of code work as intended. Recognizing this, dbt 1.8 introduced unit testing.
Unlike the data tests we have above, which ensure that incoming data meets specific criteria and are run at every data refresh, unit tests are designed to verify that the transformation logic itself produces the expected results. In the context of dbt, unit tests validate transformation logic by comparing the test results against predefined data typically defined using seeds (CSV files) or SQL queries. Unit tests should only be executed when new data transformation code is introduced and implemented since they are designed to help catch potential issues early in the development process. It is recommended to run unit tests only during the CI step. Running them in production would be a redundant use of compute resources because the expected outcomes do not change. Unit testing is only available in 1.8 or higher, but there are community packages (dbt-unit-testing, dbt_datamocktool, dbt-unittest) that have worked to solve this problem and are worth exploring if you are not using dbt 1.8.
While not technically a dbt test, a freshness check validates the timeliness of source data. The freshness check in dbt Core is designed to monitor the timeliness of the data. It helps ensure that the data loaded into your warehouse is updated regularly and remains relevant for decision-making processes. This is valuable because sometimes data will stop getting refreshed and the data pipelines will continue to run with a silent failure. To assure that you are alerted when a data delivery SLA is not met, simply add a freshness check to your sources.
This comprehensive suite of testing capabilities in dbt Core ensures that data teams can build, maintain, and verify the reliability and accuracy of their data models effectively.
In addition to the generic tests that can be found within dbt Core, there are a lot more in the dbt ecosystem. These tests are found in dbt packages. Packages are libraries of reusable SQL code created by organizations of the dbt community. We will briefly go over some of the tests that can be found in these packages.
The dbt-utils package, created by dbt Labs, contains generic dbt tests, SQL generators, and macros. The dbt_utils package include 16 generic tests including:
not_accepted_values: this test is the opposite of the accepted_values test and is used to check that specific values are NOT present in a particular range of rows.
equal_rowcount: this test checks that two different tables have the same number of rows. This is a useful test that can assure that a transformation step does not accidentally introduce additional rows in the target table.
fewer_rows_than: this test is used to verify that a target table contains fewer rows than a source table. For example, if you are aggregating a table, you expect that the target table will have fewer rows than the table you are aggregating. This test can help you validate this condition.
There are 17 generic dbt tests available in the dbt-utils package.
Another awesome package that can accelerate your data testing is dbt-expectations. This package is a port of the great Python library Great Expectations. For those not familiar, Great Expectations is an open-source Python library that is used for automated testing. dbt-expectations is modeled after this library and was developed by Calogica so dbt practitioners would have access to an additional set of pre-created Generic tests without adding another tool to the data platform. Tests in dbt-expectations are divided into seven categories encompassing a total of 62 generic dbt tests:
You can find detailed information on all the dbt-expectations generics tests in their documentation.
Created by Snowflake, dbt_constraints adds primary and foreign key constraints to dbt models. When incorporated into a dbt project, this package automatically creates unique keys for all existing unique and dbt_utils.unique_combination_of_columns tests, along with foreign keys for existing relationship tests and not null constraints for not_null tests. It provides three flexible tests - primary_key, unique_key, and foreign_key - which can be used inline, out-of-line, and support multiple columns.
The elementary tool offers 10 generic dbt tests that help in detecting schema changes, validating JSON schemas, and monitoring anomalies in source freshness, among other functionalities.
dbt-fihr focuses on the healthcare sector, providing 20 generic dbt tests for validating HL7® FHIR® (Fast Healthcare Interoperability Resources) data types, a standard for exchanging healthcare information across different systems.
Maintained by Google, the fhir-dbt-analytics package includes tests that ensure the quality of clinical data. These tests might involve counting the number of FHIR resources to verify expected counts or checking references between FHIR resources.
By leveraging these diverse dbt testing packages, data teams can significantly enhance their data validation processes, ensuring that their data pipelines are robust, accurate, and reliable.
While the tests above run against production data and are run even when none of the dbt code has changed, there are some tests that should be applied during development. This will improve a project's long term maintainability, assure project governance, and validate transformation logic in isolation of production data.
This dbt-meta-testing package contains macros to assert test and documentation coverage leveraging a configuration defined in the dbt_project.yml configuration settings.
While dbt tests are great to test with "real" data, sometimes you may want to test the logic of a transformation with "fake" data. This type of test is called a unit test. The dbt-unit-testing package has all you need to do proper dbt unit testing. (side note, the dbt Core team has announced the unit testing will be part of a future release of dbt although it may not be exactly as done using this package).
dbt_datamocktool can be used to create mock CSV seeds to stand in for the sources and refs that your models use and test that the model produces the expected output as compared with another CSV seed.
The dbt-unittest is a dbt package to enhance dbt package development by providing unit testing macros.
Incorporating automated data validation into CI/CD pipelines helps catch issues early and ensures data accuracy before deployment. By integrating tests into every code change, teams can prevent bad data from reaching production and maintain reliable data pipelines.
dbt-checkpoint is a library that can be leveraged during the development and release life-cycle to assure a level of governance of the dbt project. Typical validations include assuring that dbt models and/or their columns have descriptions and that all the columns in a dbt model (sql) are present in a property file (yml).
Recce is an open-source data validation toolkit for comprehensive PR review in dbt projects. Recce helps to validate the data impact of code changes during development and PR review by enabling you to compare data structure, profiling statistics, and queries between two dbt environments, such as dev and prod. By performing Recce checks, you are able to identify unexpected data impact, validate expected impact, and prevent bad merges and incorrect data entering production.
Recce checks, can be performed during development, automatically as part of CI, and as part of PR review for root cause analysis. The suite of tools in Recce enable you to perform:
Record the results of your data validations in the Checklist and share as part of PR review or discussion with stakeholders.
For full coverage, use Recce’s automated ‘preset checks’ that are triggered with each pull request and automatically post an impact summary to your PR comment.
Recce Cloud users can also take advantage of check-syncing and PR merge-blocking until the reviewer or stakeholders have approved the check results.
By default, dbt will not store the results of a dbt test execution. There is a configuration that can be set for the dbt project or at the specific model level which will have dbt store the failures of the test in a table in the data warehouse. While this is a good start, these test results get overridden each time dbt tests are run. To overcome this deficiency, tools have been developed in the community that store results longitudinally and even provide dashboards of test results.
Elementary is an open source data observability tool for dbt. It simplifies the capture of dbt test results over time, enables testing without having to manually add tests to all your dbt model columns, and has a user interface for viewing test results as well as dbt lineage.
Elementary also provides advanced configurations for generating Slack alerts for dbt tests, enhancing how teams monitor and respond to data quality issues. You can configure alerts based on test results, test statuses, and test durations. Additionally, you can set up recurring alerts based on a schedule that you define, ensuring continuous oversight without constant manual checking.
Key features include:
This comprehensive suite of tools not only sends notifications but also allows for significant customization, ensuring that alerts are meaningful and actionable. The integration of these features into your workflow facilitates better data management and quicker response to potential data discrepancies, streamlining your project's efficiency and reliability.
This dbt Data Quality package is a Snowflake only package that helps users access and report on the outputs from dbt source freshness and dbt test results.
The dbt-tools package makes it simple to store and visualize dbt test results in a BI dashboard.
re_data is an open-source data reliability framework for modern data stack.
When migrating data from one system to another validating that tables match is incredibly important. For this we recommend datacompy to get the job done.
Getting started with dbt testing is simple thanks to the predefined generic dbt tests found within dbt Core and the additional generic tests found in dbt-utils and dbt-expectations. In addition to these juggernauts of the dbt community other organizations in the dbt community have contributed a additional generic tests, tools to improve dbt development, libraries that can help with validation and governance before releasing code to production and tools that can improve data quality observability. If you are using dbt cloud or dbt core you may be interested in reading more about dbt alternatives such as Datacoves which falls under the managed dbt core solutions.
You now know what dbt (data build tool) is all about. You are being productive, but you forgot what `dbt build` does or you forgot what the @ dbt graph operator does. This handy dbt cheat sheet has it all in one place.
With the advent of dbt 1.6, we updated the awesome dbt cheat sheet created originally by Bruno de Lima
We have also moved the dbt jinja sheet sheet to a dedicated post.
This reference summarizes all the dbt commands you may need as you run your dbt jobs or study for your dbt certification.
If you ever wanted to know what the difference between +model and @model is in your dbt run, you will find the answer. Whether you are trying to understand dbt graph operators or what the dbt retry command does, but this cheat sheet has you covered. Check it out below.
These are the principal commands you will use most frequently with dbt. Not all of these will be available on dbt Cloud
The dbt commands above have options that allow you to select and exclude models as well as deferring to another environment like production instead of building dependent models for a given run. This table shows which options are available for each dbt command
By combining the arguments above like "-s" with the options below, you can tell dbt which items you want to select or exclude. This can be a specific dbt model, everything in a specific folder, or now with the latest versions of dbt, the specific version of a model you are interested in.
dbt Graph Operator provide a powerful syntax that allow you to hone in on the specific items you want dbt to process.
The following commands are used less frequently and perform actions like initializing a dbt project, installing dependencies, or validating that you can connect to your database.
The flags below immediately follow the dbt command and go before the subcommand e.g. dbt <FLAG> run
Read the official dbt documentation
As a managed dbt Core solution, the Datacoves platform simplifies the dbt Core experience and retains its inherent flexibility. It effectively bridges the gap, capturing many benefits of dbt Cloud while mitigating the challenges tied to a pure dbt Core setup. See if Datacoves dbt pricing is right for your organization or visit our product page.
Please contact us with any errors or suggestions.
I read an article on Anchor Data Modeling, more specifically, Atomic modeling where the author proposes a different way of Data Modeling. The rationale for this change is that there is a lack of skills to model data well. We are giving powerful tools to novices, and that is bound to lead to problems.
From the article:
"we are in a distressful situation both concerning the art as a whole but also its place in modern architectures"
Is this the case? Do we have a big problem on the horizon that requires us to make this big shift?
I'd say I am open-minded and expose myself to different ways of thinking so I can broaden my views. A few years ago, I learned a bit about COBOL, not because I had any real use for it but because I was curious. I found it very interesting and even saw its similarities with SQL. I approached the topic with no preconceived ideas; this is the first time I heard of Atomic Modeling.
The issues I see with ideas like Atomic data modeling are not in their goal. I am 100% aligned with the goal; the problem is the technology, process, and people needed to get there.
What we see in the market is a direct result of a backlash against doing things "perfectly." But why is this the case? I believe it is because we haven't communicated how we will achieve this vision of ideas like atomic data. The author even says a key phrase in the first paragraph:
"practitioners shying away from its complexity"
If doing anchor data modeling is "complex" how are we going to up-skill people? Is this feasible? I am happy if I can get more people to use SQL vs a GUI tool like Alterix 😁
I am by no means an expert. Yet, I am fairly technical, and if I am not convinced, how will we convince decision-makers?
As I read this article, here's what I am thinking:
1. First, I will need to deconstruct the data I get from some source like material master data form SAP. That will be a bunch of tables, and who is going to do all this data modeling? It sounds expensive and time-consuming.
2. I am going to need some tooling for this, and I am either going to build it or use something a few others are using. Will my company want to take a chance on something this early? This sounds risky.
3. After I deconstruct all this data, I need to catalog all these atoms. I now have a lot of metadata, and that's good, but is the metadata business-friendly? We can't get people to add table descriptions how is this going to happen with this explosion of objects? Who will maintain it? How will we expose this? Is there a catalog for it already? Does that catalog have the other features people need? It sounds like I need to figure out a bunch of things, the biggest one being the change management aspect.
4. What sort of database will I use to store this? This is a great use case for a graph database. But graph databases are not widely adopted, and I have seen graph databases choke at scale. We can use a relational database, but these joins are going to be complex. Someone may have figured all this out, but there's more tech and learning needed. It sounds like this will also add time and expense.
5. When I have managed to do all the above, I will need to construct what people can actually use. We need objects that work with tools that are available. I need to make relational tables I can query with SQL and viz tools, which are more user-friendly. This sounds like more work, more time, and more money.
I may have missed some steps and oversimplified what's needed for this type of change. I am also aware that I may not know what exists to solve all the above. However, if I don't know it, then there are a ton of other people who also don't know it and this is where we need to start. We need to understand how we will tactically achieve this "better" world.
I've had conversations on metadata-driven automation, and like atomic modeling, I am not clear on who we are helping and how. What are we improving and in what timeframe? In the end, it feels like we have optimized for something only a few companies can do. To do anchor modeling well would be a huge expense, and when things go wrong, there are several points of failure. When we look at business problems, we need to be sure to optimize the end-to-end system. We can't locally optimize one area because we are likely moving the problem somewhere else. This can be in terms of time, money, or usability.
Decision-makers are not interested in data modeling. They are expecting results and a faster time to market. It's hard enough getting people to do things "better." This is why I find it hard to imagine that we can get to this level of maturity any time soon.
There are incremental steps we can take to incorporate best practices into the modern data stack. We need to help people mature their data practice faster, and we should not let perfection get in the way of good. Most companies are not large enterprises with millions of dollars to spend on initiatives like atomic modeling. That being said, I have yet to see anchor modeling in practice, so I welcome the opportunity to learn. I remember years ago the debates about how Ruby on Rials was teaching people "bad practices." The other side of that argument is that Rails helped companies like Twitter and Github launch businesses faster. Rails was also better than the alternative at the time, which included messy PHP code. Others advocated for well-crafted "scalable" and expensive Java applications. Rails may not be the powerhouse it once was, but it has had a huge influence on how we build software. I even see its influence in dbt even if it might not have been intentional or direct.
Tools like Snowflake and dbt allow us to build processes that are much better than what most people have. Should we focus on all the "bad" things that may come with the modern data stack? Should we focus on how practitioners are not well educated, and so we need to throw all they are doing out?
I don't think so; I believe that we can help companies mature their data practices faster. Will we have the best data models? Maybe not. Will users do things perfectly? Nope. But can we help them move faster and guide them along their journey to avoid big pitfalls? I think we can. Getting people to use git, automating testing, and creating DataOps processes is a huge step forward for many organizations. Let's start there.
There's a reason Data Mesh and the Modern Data Stack resonate with so many people. There's a desire to do things faster with more autonomy at many companies, not just the ones with multi-million-dollar budgets. Let's focus on what is achievable, do the best we can, and help people mature along the way. We don't need more complexity; we need less.
Using dbt with Snowflake is one of the most popular and powerful data stacks today. Are you facing one of these situations:
- You just joined a data team using dbt Core with Snowflake, and you want to set up your local dbt development environment
- Your company is already using Snowflake and wants to try out dbt.
- You are using dbt with another data warehouse and you want to try dbt with Snowflake before migrating.
If you are facing any of these, this guide will help you set up your dbt environment for Snowflake using VS Code as your dbt development environment. We will also cover useful python libraries and VS Code extensions that will make you more productive. Want to become a dbt on Snowflake ninja, keep reading.
To get started, you need to set up your dbt development environment. This includes Python, dbt, and VS Code. You will also need to set up your Snowflake account properly so dbt can work its magic.
While dbt supports versions of Python greater than 3.7, some other tools like Snowpark require Python 3.8, therefore we recommend you stick with that version. You can find the installer for your particular Operating System on this page. Finding the right Windows Installer can be confusing, so look for a link titled Windows installer (64-bit). If you are on a Mac, you can use the Universal Installer macOS 64-bit universal2 installer.
When using dbt, you will also need Git. To setup git, follow this handy guide.
The preferred IDE for dbt is VS Code, you can find it on the official Microsoft site. click the big Download button and install like any other app.
Installing dbt is done using pip. You can find more information on this page.
For dbt Snowflake, simply run:
This will install the latest version of dbt core along with the dbt adapter for Snowflake. If you need to use an older version of dbt, you will need to specify it when you run pip. However, the version of the dbt adapter may not match the version of dbt core.
For example, as of this writing, the last version of dbt core 1.3.x is 1.3.4. However, dbt-snowflake for 1.3.x is 1.3.2. So, if you want to install the latest dbt 1.3.x for snowflake, you would run
This will install dbt-snowflake 1.3.2 along with dbt-core 1.3.4
The final pre-requisite you will need to do is set up a Snowflake user that has been granted a role with the right access to a database where dbt will create views and tables. The role should also have access to a Snowflake Warehouse for compute. Here is a handy guide that gives you the basics. We would recommend a more comprehensive setup for a production deployment, but this will get you going for now.
The key items that are not covered in that guide is that you should create a role ANALYST and a database ANALYTICS_DEV and grant OWNERSHIP of that database to the ANALYST role. The ANALYST role should also be granted USAGE on the TRANSFORMING warehouse. You also need to grant the ANALYST role to your specific user. Don’t run as ACCOUNTADMIN.
This is all needed because when dbt runs it will create a schema for your user in the ANALYTICS_DEV database and you will use the TRANSFORMING warehouse when compute is needed like when dbt creates tables.
If all of this seems confusing or tedious, you should consider a managed dbt solution like dbt Cloud or Datacoves. For more information, checkout our in-depth article where we compare dbt cloud vs dbt core as well as managed dbt core.
Now with all the pre-requisites out of the way, let’s configure dbt to connect with Snowflake.
To initialize your dbt project in Snowflake, dbt has a handy command dbt init. You can configure your dbt Snowflake profile using the dbt init command both for a new and a existing dbt project. First you will need to clone your repo using git. Then, simply run the dbt-init command and go through the prompts.
Once you get your project set up, consider adding a profile_template.yml to your project. As stated on that page, using a profiles template will simplify the dbt init process for users on your team.
To make sure dbt can connect to Snowflake, run dbt debug. If dbt can connect to your Snowflake account, you should see “All checks passed!” If you have problems, then join the dbt Community search the forums or ask a question in the #db-snowflake channel.
Even though dbt performed the setup of your profile.yml to connect to Snowflake with your credentials, it only provides the basic setup. This page provides additional parameters. that you can configure for the Snowflake connection in your profiles.yml file.
If you want to configure those parameters, you will need to open and edit the profiles.yml file. The profiles.yml file created by dbt init will be in your user’s home directory in a subdirectory called .dbt.
One handy configuration parameter to change is reuse_connections. Also, if you use SSO authentication with external browser, you should consider setting up connection caching on Snowflake, otherwise you will be prompted to authenticate for every connection dbt opens to the database.
Now that you have set up your dbt connection to Snowflake, there are some other options you can configure when dbt runs against your Snowflake account. This includes overriding the default warehouse for a specific model, adding query tags, copying grants, etc. This handy page has a lot more information on these dbt snowflake advanced configurations.
Now that you have dbt connecting to your database, let’s talk about some python libraries you should set up to improve how you work with dbt.
dbt-coves is an open source library created by Datacoves to complement dbt development by simplifying tedious tasks like generating staging models. It is a must-have tool for any dbt practitioner who wants to improve their efficiency. dbt-coves will automatically create your source.yml and staging models as well as their corresponding yml(property) files. It also has utilities for backing up Airbyte and Fivetran configurations.
SQLFluff is a Python library for linting SQL code. SQLFluff seamlessly integrates dbt using a templater and it is the only linter compatible with dbt. If you have not heard of code linting it helps you enforce rules on how your SQL code is formatted for example, should everyone use leading or trailing commas, should SQL keywords be upper or lower case. We recommend everyone use a linter as this will improve code readability and long term maintainability.
pre-commit with dbt-checkpoint
dbt-checkpoint is a tool that allows you to make sure your dbt project complies with certain governance rules. For example, you can have a rule that validates whether every dbt model has a description. You can also ensure that every column is documented among many other rules. We also recommend the use of dbt-checkpoint as it will assure developers don’t add technical debt from the start of a project.
In addition to these Python libraries, at Datacoves we set up the development environment with other handy libraries like Snowpark and Streamlit. We believe that flexibility is important especially in enterprise environments. If you want to learn what to consider when selecting a managed dbt core platform, check out our guide.
In addition to Python libraries, you can improve your dbt workflow with Snowflake by installing these VS Code extensions.
The official Snowflake dbt extension keeps you in the flow by bringing the Snowflake interface to VS Code. With it you can explore your database, run queries, and even upload and download files to Snowflake stages. It is a must-have for any Snowflake user.
dbt power user is a VS Code extension that improves the dbt development experience by adding handy shortcuts to run dbt models, tests, and even let’s you preview the result of a dbt model or a CTE within that model.
The SQLFluff VS Code extension is the companion to the SQLFluff python library. It improves the development experience by highlighting linting errors right in line with your SQL code. It even has a handy hover which describes the linting error and links to the SQLFluff documentation.
There are many other great VS Code extensions and at Datacoves we are always improving the dbt developer’s experience by pre-installing them. One recent addition demonstrated on the video below is a ChatGPT extension that allows you to improve the dbt experience by writing documentation in addition to other functions.
Getting started with dbt and Snowflake is not hard and knowing how to streamline the development experience when working with dbt and Snowflake will maximize developer happiness.
Some users may run into issues configuring their development environment. If that happens, check out the #sqlfluff, #tools-dbt-libraries, and #tools-vscode channels on the dbt Slack community. There are many helpful people there always ready to help.
As you can see there are a lot of steps and potential gotchas to get a dbt environment properly configured. This gets more complicated as the number of dbt users increases. Upgrading everyone can also pose a challenge. These reasons and more are why we created the most flexible managed dbt-core environment. If you want your developers to be up and running in minutes with no installation required, reach out and we can show you how we can streamline your teams’ dbt experience with best practices from the start.
Since its inception, dbt has served the needs of small to mid-sized companies to transform data into actionable insights. Now as larger enterprises look to adopt dbt, they must consider the unique complexities of large enterprises. These include integrating with existing systems behind a corporate firewall, orchestrating end-to-end data pipelines, and implementing DataOps processes to transform how teams collaborate across the organization.
This article compares three popular dbt development and deployment options: leveraging dbt Cloud, using dbt Core alone, or using a dbt Core managed platform other than dbt Cloud. To learn more about specific dbt Cloud features and how to implement them using dbt Core using other open-source tools checkout dbt Core vs dbt Cloud - Key Differences.
dbt Cloud is a hosted environment to develop and deploy dbt Core projects. dbt Cloud leverages dbt Core, the open-source data transformation framework we all know as dbt. dbt Cloud pricing starts at $100 per developer for teams or if you are a single developer, they offer a free single seat with limited features.
When companies are ramping up with dbt, one of the hardest parts is setting up and managing dbt IDE environments. Analytic Engineers coming to dbt may not be familiar with concepts like version control with git or using the command line. The dbt Cloud IDE simplifies developer onboarding by providing a web-based SQL IDE to team members so they can easily write, test, and refine data transformation code without having to install anything on their computers. Complexities like starting a git branch are tucked behind a big colorful button so users know that is the first step in their new feature journey.
Developers who are accustomed to more versatile local IDEs, such as VS Code, may find the dbt Cloud experience limiting as they cannot leverage extensions such as those from the VS Code Marketplace nor can they extend dbt Core using the vast array of Python libraries. An example of a common library employed in the dbt community is SQLFluff. With SQLFluff, teams can ensure a minimum level of code quality is achieved across developers.
DataOps is a set of practices that combines data management and software engineering to improve the quality, speed, and collaboration of data analytics teams. In an enterprise environment, implementing DataOps processes early on in a project's lifecycle is crucial.
dbt Cloud can be paired with Continuous Integration (CI) tools like GitHub Actions to validate data transformations before they are added to a production environment.
If CI integration checks include things like SQLFluff and dbt-checkpoint, there is currently no way for users to run these validations in dbt Cloud prior to executing the automated CI checks in GitHub Actions. This may lead to a lot of back and forth between the GitHub Actions run failures and the dbt Cloud IDE to fix and commit the changes. Aspects such as code reviews and approvals will occur in the CI/CD tool of choice such as GitHub and dbt Cloud can report job execution status back to GitHub Actions. This allows teams to know when it is safe to merge changes to their code.
Companies that have tools like Bitbucket, Jira, and Jenkins within their corporate firewall may find it challenging to integrate with dbt Cloud.
dbt Cloud makes deploying a dbt Core project simple. It allows you to define custom environment variables and the specific dbt commands (seed, run, test) that you want to run during production runs. The dbt Cloud scheduler can be configured to trigger at specific intervals using an intuitive UI.
dbt Cloud is primarily focused on running dbt projects. Therefore if a data pipeline has more dependencies, an external orchestration tool may be required. Cases where this is necessary include when you need to connect the Extract and Load step to the Transformation happening in dbt. Without connecting these steps, you have no assurance that the load is complete before the transformation starts. This can be mitigated with freshness checks, but without an explicit connection between the load step and the transformation, you may be delaying transformation unnecessarily.
Fortunately, if you do use an external orchestrator, dbt Cloud offers an API to trigger dbt Cloud jobs from your orchestrator. Another reason an external orchestrator may be needed in an enterprise is when there are additional steps to run after the dbt transformation. These may include sending data to downstream BI tools, marketing campaign tools, MDM systems, or refreshing machine learning models. dbt Cloud recently announced a webhooks API that would allow for triggering steps after transformation. However, if these endpoints reside within a corporate firewall, this may not be an option and an orchestrator like Airflow may be necessary.
The dbt Cloud IDE does not allow for the installation of Python libraries and dbt Cloud cannot create and orchestrate Python scripts that leverage tools like SQLFluff (this is coming to dbt Cloud later this year), dbt-coves, dbt-fal, Snowpark, Permifrost, or Streamlit. Additionally, the dbt Cloud IDE cannot be extended with extensions such as the official Snowflake or Databricks VS Code extensions.
While dbt Cloud can send notifications via email and Slack, it does not support other popular enterprise systems such as MS Teams.
dbt Cloud offers industry-standard SaaS security appropriate for any enterprise. At the enterprise level, it offers Single Sign-On and Role Based Access Controls. Enterprises can also choose to have dbt Cloud provisioned on a dbt Labs managed private cloud account. dbt Cloud is only offered as a managed SaaS solution on AWS and thus cannot be deployed to a company's existing private cloud account.
dbt Cloud is especially attractive for organizations with limited in-house technical resources or those seeking to minimize the time and effort spent on initial setup, maintenance, and upgrades. dbt Cloud runs in the browser and thus removes the need for manual installation and setup of dbt components, allowing your team to focus on data transformation tasks. dbt Cloud handles updates and upgrades for you, so it is simple to stay up-to-date and secure. dbt Cloud includes built-in scheduling capabilities, allowing you to automate dbt runs and testing without relying on external schedulers or orchestration tools.
dbt Cloud may introduce additional complexities in large enterprises with more complex orchestration needs or those that need to host the environment within their private cloud. Finally, the dbt Cloud IDE may feel constraining for users who prefer a VS Code environment.
All these features can in turn reduce the time to value in setting up an end-to-end enterprise data management platform. It is possible to start out with a simple setup, but inevitably not accounting for the breadth of the entire platform may create technical debt and cause rework in the future.
Pros:
- Simplified setup and management of dbt environment
- Enhanced collaboration capabilities for data teams
- Integrated dbt job scheduling and monitoring
- Managed upgrades and updates
- Web-based IDE for streamlined development
- Metadata API
Cons:
- Reliance on a third-party platform
- May be more expensive for larger teams or organizations with complex requirements
- Not able to deploy within the corporate's private cloud
- Unable to leverage VS Code extensions and other Python libraries
- May require additional components or additional SaaS solutions for complex orchestrations
dbt Core is the heart of dbt and since it is open source, anyone can use it freely. That being said, an enterprise data management platform must account for additional requirements such as the development experience, deployment and scheduling dbt runs, and creating a DataOps process. This will impact the total cost of ownership and the platform's time to market.
Leveraging dbt Core allows for ultimate flexibility, but it involves setting up a development environment on each team member's local machine or on a virtual environment such as an AWS workspace. Installation includes installing a popular dbt IDE like VS Code, installing dbt Core, configuring a connection to the data warehouse, and managing additional dependencies such asa compatible version of Python.
While the overall installation process for dbt is similar for both Windows and Mac users, there are some differences and potential gotchas to be aware of. Additionally, most organizations provide users with pre-configured computers and these systems may be delivered with software that conflicts with dbt Core. This complexity can lead to frustration and delays and may require assistance from senior members of the team, pulling them away from value-added work.
Once everything is installed, configuring dbt to connect to a data warehouse can also introduce complexity before a new team member can begin familiarizing themselves with the organization's dbt project structure and coding practices.
An enterprise setup of dbt should also include components that improve developer code quality and productivity. Popular IDEs like VS Code include a vast array of extensions that also improve the development experience. These include dbt Power User, VS Code extension for SQLFluff, and the dbt Snowflake extension.
Configuring a development environment can take anywhere from a few days to as long as a week. Depending on the person’s technical aptitude and experience with dbt. To improve this process, companies spend weeks or months dialing in the installation process and documenting it in knowledge base tools like Confluence or Notion.
A development environment is not evergreen, it must be upgraded as new versions of dbt Core are released for added functionality or to fix bugs. Upgrading can be as error-prone as new installations and some companies opt not to keep their enterprise data platform current. This, however, is ill-advised because this type of technical debt only gets harder to remediate over time.
When using dbt Core for your enterprise data platform, you will need to not only define and configure the automation scripts, but you will also need to ensure that all the components, such as a git server, CI server, CI runners, etc. are all working harmoniously together.
Since dbt Core runs within the corporate firewall, it can be integrated with any CI tool and internal components such as Jira, Bitbucket, and Jenkins. This flexibility comes at a price. To do this well, all the project dependencies must be packed into reusable Docker containers. Notifications will also need to be defined across the various components and all of this will take time and money.
When setting up a deployment environment, companies using dbt Core can leverage any orchestration tool, such as Airflow. They can connect steps prior to or after the dbt transformations and they can trigger any tool that exists within or outside the corporate network.
However, scaling tools like Airflow is not straightforward and may require knowledge of additional technologies like Kubernetes. By default, Airflow uses Python files and therefore, the team working with these orchestration scripts will need to also know Python on top of SQL.
A mature enterprise platform will also require multiple Airflow environments for development, testing, and production, adding complexity and increasing the total cost of ownership.
Using dbt Core is inevitably the most flexible option, which is why many organizations choose to go this route. Companies can run dbt Core and leverage leading code editors like VS Code. They can install any additional Python dependencies, including running any proprietary code that is only available within the corporate firewall. They can also take advantage of the ever-growing VS Code extensions such as those for Snowflake or Databricks.
Teams using dbt Core can send notifications to Slack, MSTeams, or any other platform as long as they develop and maintain these solutions.
However, this extensibility will only increase the platform's total cost of ownership and the time it takes to deploy the end-to-end platform.
One reason some enterprises choose to use dbt Core is that they are not able to leverage SaaS solutions due to compliance or data privacy requirements such as GDPR. By leveraging dbt Core, they can achieve ultimate security as dbt Core would run in and comply with corporate network policies.
Running dbt Core within the corporate firewall also eliminates the need for lengthy risk assessments. However, ensuring that security patches are applied is left to the organization. Managing Single Sign-on with tools like Airflow and setting up Role Based Access Controls are also things that will have to be solved when using dbt Core as a dbt enterprise data management platform.
A lot of the power and flexibility with using dbt Core comes from being able to customize the entire dbt experience. However, all of this comes with the expense of having to build a data management platform. It is not uncommon for organizations to take six months or up to a year to set up and test their custom dbt enterprise data management platform. They will also likely need to hire external consultants who have worked with a myriad of technologies and understand how to integrate them.
Building a platform is not for the faint of heart and since it is something custom to the organization, it will also increase the total cost of ownership. Some organizations get the basics in place just to make their teams productive, but eventually, they find that without proper design and implementation, they cannot take full advantage of the value of dbt and the rest of the modern data stack.
Using dbt Core as a dbt enterprise data platform can be a cost-effective option for smaller teams with limited requirements and budgets. It can also be good for those trying out dbt. Large organizations with stringent security requirements of sensitive data and strong technical platform teams may also leverage this option as it allows them to deploy in a way that is compliant with corporate policies.
As platform complexity grows, so does the cost and time needed to implement the end-to-end platform. Larger organizations should consider whether developing something custom is better than using a managed solution or taking shortcuts that can reduce the value of dbt and the modern data stack.
Pros:
- Full control over the dbt environment and configurations
- No reliance on third-party services
- No subscription costs
- Able to meet corporate security requirements by installing within the corporate firewall
Cons:
- Requires technical expertise in defining the installation steps and documenting them
- May require hands-on involvement during setup and upgrades
- It can be time-consuming and challenging to maintain consistency across team members
- Upgrades and dependency management may be more complex compared to managed solutions
- Resolving installation issues can consume senior team members' time
- Total cost of ownership of the platform may be higher than using a managed solution
- Additional expertise will be needed to set up all the required technologies
- It will take longer to implement than a managed solution
We have seen that dbt Cloud is a great dbt Core managed platform, but it has some limitations for large or complex deployments. On the other hand, using dbt Core alone gives organizations ultimate flexibility, but it comes at an added expense in terms of the time and cost that it takes to stand up and maintain a custom, one-of, enterprise data management platform.
What if you could combine the simplicity of dbt Cloud with the flexibility of dbt Core? A managed dbt Core platform, like Datacoves, can combine some of the best of both worlds. However, not all managed platforms are the same, below we discuss what to look for when considering a managed dbt Core enterprise data platform. Checkout our dbt pricing page for more pricing information.
By far, the tool most of the dbt enterprise users will interact with is the IDE. When considering a managed dbt Core platform, consider the developer experience. Will they have VS Code in the browser? Will you get a curated, best in class dbt IDE like VS Code with integrated libraries like SQLFluff and extensions that simplify the developer workflow? When required, will you be able to customize the developer environment with company specific Python libraries and extensions?
In a best-in-class developer setup, new users are onboarded in minutes with simple configuration screens that remove the need to edit text files such as profiles.yml and remove the complexity of creating and managing SSH keys. Version upgrades of dbt or any dependent library should be transparent to users.
Some platforms will also have added flexibility and let you leverage VS Code for non-dbt development tasks, such as opening a Jupyter notebook environment or a Python development environment with libraries such as Python Black.
Spinning up a pristine environment should be a matter of clicks. To test new dbt versions, you should be able to run your project in an isolated environment before switching all developers to the new version of dbt.
The advantage of a managed dbt Core platform when it comes to DataOps is that you do not have to worry about creating Docker images with all the dependencies you need as you perform your Continuous integration tests. Working with a partner that has experience with enterprise CI/CD platforms like Jenkins will also accelerate your time to value. A knowledgeable dbt Core managed platform partner will know best practices and guide you in setting up a world-class workflow that will scale with your enterprise. Developers should also be able to execute CI validations locally before pushing their changes to GitHub, thus reducing the back and forth to fix issues during the CI checks.
Some managed dbt Core platforms can run within your corporate firewall, allowing you to leverage existing tools like Jira, Bitbucket, Jenkins, or Gitlab. All this simplifies and accelerates the rollout of a dbt data management platform.
Enterprises are complex, and as such, they must consider a flexible orchestration tool that has wide adoption, documentation and can scale to the needs of the company.
A mature enterprise dbt Core platform will include a full-fledged orchestrator such as Airflow. With Airflow, organizations can orchestrate pipelines that include Extract, Load, Transform, and Activation steps. Other aspects to consider is whether Airflow jobs can scale by leveraging technologies such as Kubernetes and whether it will be simple to send notifications to enterprise tools such as MS Teams.
Some dbt Core platforms that leverage dbt have also adopted mechanisms that simplify Airflow DAG creation by letting users create them using yml files vs creating traditional Python-based DAGs.
A complete enterprise data management platform will allow you to easily create multiple Airflow environments for development, testing, and production. It will also eliminate the burden of having to create Docker images with your dbt dependencies.
An enterprise dbt Core platform will streamline the process of ramping up with dbt and it will offer the organization the flexibility it requires. This may include triggering AWS Glue jobs as well as Fivetran jobs. It may include triggering internal and external APIs or it may require a pre-configured development environment with Python libraries like Snowpark or Streamsets.
When it comes to security, different types of industries have different requirements. Regulated industries in Life Sciences or Finance may not want to or and unable to use SaaS solutions, so being able to deploy a dbt enterprise data management platform within the corporate firewall is a must.
Integrating with SSO solutions like Okta or PingID is also a must, and managing user's authorization using existing mechanisms like Active Directory simplifies compliance with corporate policies.
Another area that may be overlooked when using open-source solutions is validating that libraries are up to date and there are no vulnerabilities introduced into the network. A robust dbt Core managed platform will be able to leverage internal registries like Artifactory, which are set up to scan for these issues.
Finally, at enterprise scale, the dbt Core managed platform must have robust Role Based Access Controls to assure users have the appropriate level of access.
Just like dbt Cloud, a reliable enterprise dbt Core data management platform will reduce the time to value. Teams will not have to figure out how to host and configure the multitude of tools and libraries and they will have a starting point for implementing best practices at the start of the project.
By eliminating the need to stand up a platform, teams can focus on change management and new ways of working that will have the biggest impact on the organization. The total cost of ownership will be lower for the company since they do not have to build and constantly maintain their one-of platform. In contrast, they will benefit by working with a partner that works with other large organizations and looks for ways to improve and enhance the platform for everyone.
A managed dbt Core enterprise data platform is necessary for organizations that are not in the business of creating and managing complex technologies and those who need the flexibility that comes with complex enterprise tools and processes. When dbt Core must be deployed within the corporate firewall, an enterprise managed dbt data platform can also be a good option for companies with stringent security requirements to protect sensitive data.
Smaller organizations that want to leverage a managed VS Code environment or who want to implement DataOps from the outset can also realize the benefits of a SaaS managed dbt Core data platform.
A managed dbt Core enterprise data platform gives companies the simplicity of dbt Cloud with the peace of mind of dbt Core. Best of all, if the platform leverages open-source technologies, there is no vendor lock-in.
Pros:
- Simplified developer onboarding
- Robust IDE such as VS Code
- Ability to configure a dbt environment
- Managed orchestrator such as Airflow
- Able to meet corporate security requirements by installing within the corporate firewall
- Requires a lot less technical expertise to set up and run
- Simplified dependency management across the development environment, CI/CD worker, and Airflow
- Lower total cost of ownership
Cons:
- Unable to have full control over the platform
- Reliance on third-party
- Licensing costs
Selecting between dbt Cloud, dbt Core, or a managed dbt Core enterprise platform comes down to the internal experience within an organization and their desire to focus on data vs developing and maintaining a custom dbt platform. The beauty of the dbt ecosystem is that the components are freely available and with enough time and money, anyone can do what they need. However, enterprises that want to move fast and leverage the full potential of dbt, should consider a managed dbt Core enterprise platform such as Datacoves to reduce the total cost of ownership and accelerate time to market. It is important to be aware of the dbt alternatives to make an informed decision.
A few years ago, we identified a need to simplify how companies implement the Modern Data Stack, both from an infrastructure and process perspective. This vision led to the creation of Datacoves. Our efforts were recognized by Snowflake as we became a top-10 finalist in the 2022 Snowflake Startup Challenge. We have become trusted partners at Fortune 100 companies, and now we are ready for our next chapter.
Datacoves is thrilled to announce that we have been selected to be part of the Spring 2023 cohort at TinySeed. Their philosophy and culture align flawlessly with our values and aspirations. Our goal has always been to help our customers revolutionize the way their teams work with data, and this investment will enable us to continue delivering on that vision.
The TinySeed investment will also strengthen our commitment to supporting open-source projects within the dbt community, such as SQLFluff, dbt-checkpoint, dbt-expectations, and dbt-coves. Our contributions will not only benefit our customers but also the broader dbt community, as we believe open-source innovation enhances the tools and resources available to everyone.
We want to express our deep gratitude to Tristan Handy, CEO & Founder at dbt Labs and the entire dbt Labs team for partnering with us on the 2023 State of Analytics Engineering Community survey and for creating the amazing dbt framework. Without dbt, Datacoves would not be where it is today, and our customers would not enjoy the benefits that come with our solutions.
As we continue to grow and evolve, we look forward to finding new ways to collaborate with dbt Labs and the dbt community to further enhance how people use dbt and provide the best possible experience for everyone. Together, we can empower data teams around the world and revolutionize the way they work.