There's a lot of buzz around Microsoft Fabric these days. Some people are all-in, singing its praises from the rooftops, while others are more skeptical, waving the "buyer beware" flag. After talking with the community and observing Fabric in action, we're leaning toward caution. Why? Well, like many things in the Microsoft ecosystem, it's a jack of all trades but a master of none. Many of the promises seem to be more marketing hype than substance, leaving you with "marketecture" instead of solid architecture. While the product has admirable, lofty goals, Microsoft has many wrinkles to iron out.
In this article, we'll dive into 10 reasons why Microsoft Fabric might not be the best fit for your organization in 2025. By examining both the promises and the current realities of Microsoft Fabric, we hope to equip you with the information needed to make an informed decision about its adoption.
What is Microsoft Fabric?
Microsoft Fabric is marketed as a unified, cloud-based data platform developed to streamline data management and analytics within organizations. Its goal is to integrate various Microsoft services into a single environment and to centralize and simplify data operations.
This means that Microsoft Fabric is positioning itself as an all-in-one analytics platform designed to handle a wide range of data-related tasks. A place to handle data engineering, data integration, data warehousing, data science, real-time analytics, and business intelligence. A one stop shop if you will. By consolidating these functions, Fabric hopes to provide a seamless experience for organizations to manage, analyze, and gather insights from their data.
Core Components of Microsoft Fabric
- OneLake: OneLake is the foundation of Microsoft Fabric, serving as a unified data lake that centralizes storage across Fabric services. It is built on Delta Lake technology and leverages Azure Blob Storage, similar to how Apache Iceberg is used for large-scale cloud data management
- Synapse Data Warehouse: Similar to Amazon Redshift this provides storage and management for structured data. It supports SQL-based querying and analytics, aiming to facilitate data warehousing needs.
- Synapse Data Engineering: Compute engine based on Apache Spark, similar to Databricks' offering. It is built on Apache Spark and is intended to support tasks such as data cleaning, transformation, and feature engineering.
- Azure Data Factory: A tool for pipeline orchestration and data loading which is also part of Synapse Data Engineering
- Synapse Data Science: Similar to Jupiter Notebooks that can only run on Azure Spark. It is designed to support data scientists in developing predictive analytics and AI solutions by leveraging Azure ML and Azure Spark services.
- Synapse Real-Time Analytics: Enables the analysis of streaming data from various sources including Kafka, Kinesis, and CDC sources.
- Power BI: This is a BI (business intelligence) tool like Tableau tool designed to create data visualizations and dashboards.

Fabric presents itself as an all-in-one solution, but is it really? Let’s break down where the marketing meets reality.
10 Reasons It’s Still Not the Right Choice in 2025
While Microsoft positions Fabric is making an innovative step forward, much of it is clever marketing and repackaging of existing tools. Here’s what’s claimed—and the reality behind these claims:
1. Fragmented User Experience, Not True Unification
Claim: Fabric combines multiple services into a seamless platform, aiming to unify and simplify workflows, reduce tool sprawl, and make collaboration easier with a one-stop shop.
Reality:
- Rebranded Existing Services: Fabric is mainly repackaging existing Azure services under a new brand. For example, Fabric bundles Azure Data Factory (ADF) for pipeline orchestration and Azure Synapse Analytics for traditional data warehousing needs and Azure Spark for distributed workloads. While there are some enhancements to synapse to synchronize data from OneLake, the core functionalities remain largely unchanged. PowerBI is also part of Fabric and this tool has existed for years as have notebooks under the Synapse Data Science umbrella.
- Steep Learning Curve and Complexity: Fabric claims to create a unified experience that doesn’t exist in other platforms, but it just bundles a wide range of services—from data engineering to analytics—and introduces new concepts (like proprietary query language, KQL which is only used in the Azure ecosystem). Some tools are geared to different user personas such as ADF for data engineers and Power BI for business analysts, but to “connect” an end-to-end process, users would need to interact with different tools. This can be overwhelming, particularly for teams without deep Microsoft expertise. Each tool has its own unique quirks and even services that have functionality overlap don’t work exactly the same way to do the same thing. This just complicates the learning process and reduces overall efficiency.
2. Performance Bottlenecks & Throttling Issues
Claim: Fabric offers a scalable and flexible platform.
Reality: In practice, managing scalability in Fabric can be difficult. Scaling isn’t a one‑click, all‑services solution—instead, it requires dedicated administrative intervention. For example, you often have to manually pause and un-pause capacity to save money, a process that is far from ideal if you’re aiming for automation. Although there are ways to automate these operations, setting up such automation is not straightforward. Additionally, scaling isn’t uniform across the board; each service or component must be configured individually, meaning that you must treat them on a case‑by‑case basis. This reality makes the promise of scalability and flexibility a challenge to realize without significant administrative overhead.
3. Capacity-Based Pricing Creates Cost Uncertainty
Claim: Fabric offers predictable, cost-effective pricing.
Reality: While Fabric's pricing structure appears straightforward, several hidden costs and adoption challenges can impact overall expenses and efficiency:
- Cost uncertainty: Microsoft Fabric uses a capacity-based pricing model that requires organizations to purchase predefined Capacity Units (CUs). Organizations need to carefully assess their workload requirements to optimize resource allocation and control expenses. Although a pay-as-you-go (PAYG) option is available, it often demands manual intervention or additional automation to adjust resources dynamically. This means organizations often need to overprovision compute power to avoid throttling, leading to inefficiencies and increased costs. The problem is you pay for what you think you will use and get a 40% discount. If you don’t use all of the capacity, then there are wasted capacity. If you go over capacity, you can do configure PAYG (pay as you go) but it’s at full price. Unlike true serverless solutions, you pay for allocated capacity regardless of actual usage. This isn’t flexible like the cloud was intended to be. 👎
- Throttling and Performance Degradation: Exceeding purchased capacity can result in throttling, causing degraded performance. To prevent this, organizations might feel compelled to purchase higher capacity tiers, further escalating costs.
- Visibility and Cost Management: Users have reported challenges in monitoring and predicting costs due to limited visibility into additional expenses. This lack of transparency necessitates careful monitoring and manual intervention to manage budgets effectively.
- Adoption and Training Time: It’s important to note that implementing Fabric requires significant time investment in training and adapting existing workflows. While this is the case with any new platform, Microsoft is notorious for complexity in their tooling and this can lead to longer adoption periods, during which productivity may temporarily decline.
All this to say that the pricing model is not good unless you can predict with great accuracy exactly how much you will spend every single day, and who knows that? Check out this article on the hidden cost of fabric which goes into detail and cost comparisons.
4. Limited Compatibility with Non-Microsoft Tools
Claim: Fabric supports a wide range of data tools and integrations.
Reality: Fabric is built around a tight integration with other Fabric services and Microsoft tools such as Office 365 and Power BI, making it less ideal for organizations that prefer a “best‑of‑breed” approach (or rely on tools like Tableau, Looker, open-source solutions like Lightdash, or other non‑Microsoft solutions), this can severely limit flexibility and complicate future migrations.
While third-party connections are possible, they don’t integrate as smoothly as those in the MS ecosystem like Power BI, potentially forcing organizations to switch tools just to make Fabric work.
5. Poor DataOps & CI/CD Support
Claim: Fabric simplifies automation and deployment for data teams by supporting modern DataOps workflows.
Reality: Despite some scripting support, many components remain heavily UI‑driven. This hinders full automation and integration with established best practices for CI/CD pipelines (e.g., using Terraform, dbt, or Airflow). Organizations that want to mature data operations with agile DataOps practices find themselves forced into manual workarounds and struggle to integrate Fabric tools into their CI/CD processes. Unlike tools such as dbt, there is not built-in Data Quality or Unit Testing, so additional tools would need to be added to Fabric to achieve this functionality.
6. Security Gaps & Compliance Risks
Claim: Microsoft Fabric provides enterprise-grade security, compliance, and governance features.
Reality: While Microsoft Fabric offers robust security measures like data encryption, role-based access control, and compliance with various regulatory standards, there are some concerns organizations should consider.
One major complaint is that access permissions do not always persist consistently across Fabric services, leading to unintended data exposure.
For example, users can still retrieve restricted data from reports due to how Fabric handles permissions at the semantic model level. Even when specific data is excluded from a report, built-in features may allow users to access the data, creating compliance risks and potential unauthorized access. Read more: Zenity - Inherent Data Leakage in Microsoft Fabric.
While some of these security risks can be mitigated, they require additional configurations and ongoing monitoring, making management more complex than it should be. Ideally, these protections should be unified and work out of the box rather than requiring extra effort to lock down sensitive data.
7. Lack of Maturity & Changes that Disrupt Workflow
Claim: Fabric is presented as a mature, production-ready analytics platform.
Reality: The good news for Fabric is that it is still evolving. The bad news is, it's still evolving. That evolution impacts users in several ways:
- Frequent Updates and Unstable Workflows: Many features remain in preview, and regular updates can sometimes disrupt workflows or introduce unexpected issues. Users have noted that the platform’s UI/UX is continually changing, which can impact consistency in day-to-day operations. Just when you figure out how to do something, the buttons change. 😤
- Limited Features: Several functionalities are still in preview or implementation is still in progress. For example, dynamic connection information, Key Vault integration for connections, and nested notebooks are not yet fully implemented. This restricts the platform’s applicability in scenarios that rely on these advanced features.
- Bugs and Stability Issues: A range of known issues—from data pipeline failures to problems with Direct Lake connections—highlights the platform’s instability. These bugs can make Fabric unpredictable for mission-critical tasks. One user lost 3 months of work!
8. Black Box Automation & Limited Customization
Claim: Fabric automates many complex data processes to simplify workflows.
Reality: Fabric is heavy on abstractions and this can be a double‑edged sword. While at first it may appear to simplify things, these abstractions lead to a lack of visibility and control. When things go wrong it is hard to debug and it may be difficult to fine-tune performance or optimize costs.
For organizations that need deep visibility into query performance, workload scheduling, or resource allocation, Fabric lacks the granular control offered by competitors like Databricks or Snowflake.
9. Limited Resource Governance and Alerting
Claim: Fabric offers comprehensive resource governance and robust alerting mechanisms, enabling administrators to effectively manage and troubleshoot performance issues.
Reality: Fabric currently lacks fine-grained resource governance features making it challenging for administrators to control resource consumption and mitigate issues like the "noisy neighbor" problem, where one service consumes disproportionate resources, affecting others.
The platform's alerting mechanisms are also underdeveloped. While some basic alerting features exist, they often fail to provide detailed information about which processes or users are causing issues. This can make debugging an absolute nightmare. For example, users have reported challenges in identifying specific reports causing slowdowns due to limited visibility in the capacity metrics app. This lack of detailed alerting makes it difficult for administrators to effectively monitor and troubleshoot performance issues, often needing the adoption of third-party tools for more granular governance and alerting capabilities. In other words, not so all in one in this case.
10. Missing Features & Gaps in Functionality
Claim: Fabric aims to be an all-in-one platform that covers every aspect of data management.
Reality: Despite its broad ambitions, key features are missing such as:
- Geographical Availability: Fabric's data warehousing does not support multiple geographies, which could be a constraint for global organizations seeking localized data storage and processing.
- Garbage Collection: Parquet files that are no longer needed are not automatically removed from storage, potentially leading to inefficient storage utilization.
While these are just a couple of examples it's important to note that missing features will compel users to seek third-party tools to fill the gaps, introducing additional complexities. Integrating external solutions is not always straight forward with Microsoft products and often introduces a lot of overhead. Alternatively, users will have to go without the features and create workarounds or add more tools which we know will lead to issues down the road.
Conclusion
Microsoft Fabric promises a lot, but its current execution falls short. Instead of an innovative new platform, Fabric repackages existing services, often making things more complex rather than simpler.
That’s not to say Fabric won’t improve—Microsoft has the resources to refine the platform. But as of 2025, the downsides outweigh the benefits for many organizations.
If your company values flexibility, cost control, and seamless third-party integrations, Fabric may not be the best choice. There are more mature, well-integrated, and cost-effective alternatives that offer the same features without the Microsoft lock-in.
Time will tell if Fabric evolves into the powerhouse it aspires to be. For now, the smart move is to approach it with a healthy dose of skepticism.
👉 Before making a decision, thoroughly evaluate how Fabric fits into your data strategy. Need help assessing your options? Check out this data platform evaluation worksheet.