Data Analytics Glossary

Data analytics glossary

As the world of data management continues to grow, terms and new concepts are constantly popping up. It's important for data professionals to stay up to date with terms such as Data Mesh and data observability. For those coming into the field from other areas, it’s also good to understand terminology to communicate more effectively with others.

In this blog post, we've put together an extensive table that breaks down and explains the essential terms in modern data engineering, analytics, and architecture. This resource is designed to help both experienced data professionals and newcomers alike to navigate and understand the ever-evolving language of data.

Glossary

We've covered basic concepts like data warehouses and ETL pipelines and advanced ideas like Data Mesh. Each of these terms is crucial in shaping today's data ecosystems. Think about how these terms apply to your business and can enhance your understanding. Have we missed any terms that you were hoping to see defined, or do you think we could improve the definitions of some of the terms already defined? Please share your thoughts with us by providing feedback through our contact page.

Interested in modern data solutions? Accelerate your journey to a modern data stack with Datacoves' managed solution, designed to streamline your data processes and implement best practices efficiently. Discover how Datacoves can help you quickly add value and transform your data strategy, ensuring you make the most informed decisions for your specific needs, by scheduling a demo.

Last updated on
March 21, 2025

Get our free ebook dbt Cloud vs dbt Core

Comparing dbt Core and dbt Cloud? Download our eBook for insights on feature, pricing and total cost. Find the best fit for your business!

Get the PDF

Table of Contents

Get our free ebook dbt Cloud vs dbt Core

Seamless data analytics with managed dbt and managed Airflow

Don’t let platform limitations or maintenance overhead hold you back.

Book a Demo